train
Autoencoder(base_channel_size, latent_dim, encoder_class=Encoder, decoder_class=Decoder, num_input_channels=3, width=32, height=32)
Bases: LightningModule
Source code in unsat/train.py
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
|
forward(x)
The forward function takes in an image and returns the reconstructed image.
Source code in unsat/train.py
187 188 189 190 191 192 193 |
|
LightningTrainer(network, class_names, dimension, input_channels, optimizer, **kwargs)
Bases: LightningModule
Args: network (nn.Module): The network to train. class_names (List[str]): The names of the classes. dimension (int): The number of spatial dimensions. input_channels (int): The number of input channels.
Source code in unsat/train.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
|
WandbSaveConfigCallback
Bases: SaveConfigCallback
Custom callback to save the lightning config to wandb.